

Philadelphia University Faculty of Engineering

Student Name: Student Number:

Dept. of Electrical Engineering Second Exam, Second Semester: 2018/2019

Course Title: Electromagnetics I

Date: 1/5/2019

Course No: (610213)

Time Allowed: 50 Minutes

Lecturer: Dr. Mohammad Abu-Naser

No. of Pages: 3

Question 1:

(30Mark)

Objectives: This question is related to electric potential and work In an electric field

$$\vec{E} = 20r \sin \theta \hat{r} + 10r \cos \theta \hat{\theta} \text{ V/m}$$

- 1) Calculate the energy expended in transferring a 10 nC charge from point $A(r, \phi, \theta) = (5,30^{\circ}, 0^{\circ})$ to point $B(r, \phi, \theta) = (10,30^{\circ}, 60^{\circ})$
- 2) Calculate the potential difference between A and B V_{AB}

1)
$$W_{AB} = -Q$$
 $\int_{E}^{\infty} dI$

$$= -Q \int_{r=5}^{\infty} 20r \sin\theta dr \left[-Q \int_{\theta=0}^{60} 10r \cos\theta r d\theta \right]$$

$$= 0 - Q 10r^{2} \int_{r=0}^{60} \sin\theta \int_{0}^{60}$$

$$= -Q \times 1000 \times \sin 60 = -Q \times 866 = -8660 \text{ nJ}$$

2)
$$V_{AB} = \frac{W_{BA}}{Q} = 866 \text{ V}$$

Objectives: This question is related to parallel plate capacitor

The conducting plates of parallel plate capacitor placed at z = -2 m and z = 2 m are maintained at potentials of 0 and 200 V, respectively. If the surface area of each plate is 1000 m² and that the plates are separated by air. Calculate:

- 1) The potential between the plates by solving the Laplace equation
- 2) The electric field between the plates through $\vec{E} = -\nabla V$
- 3) The electric flux density between the plates
- 4) The surface charge densities at the plates ρ_s
- 5) The capacitance using C = Q/V
- 6) Total energy stored in the capacitor using $\frac{1}{2} \iiint \varepsilon E^2 dv$
- 7) Total energy stored in the capacitor using $\frac{1}{2}CV^2$

1)
$$\frac{d^{2}V}{dz^{2}} = 0$$

 $\frac{dV}{dz} = A$
 $V = A = 2 + B$
 $V(-2) = 0 = -2A + B$ $\Rightarrow 200 = 2B \Rightarrow B = 100$
 $V(2) = 200 = 2A + B$ $\Rightarrow A = 50$
 $V(2) = 50 = 2A + B$

$$2)\vec{E} = -\nabla V = -\frac{\partial V}{\partial z}\hat{z} = -50\hat{z}V/m$$

3)
$$\vec{D} = \mathcal{E} \cdot \vec{E} = 8.85 \times 10^{12} \times 50^{2} = -4.425 \times 10^{10} \hat{z} \cdot C/m^{2}$$

5)
$$C = \frac{Q}{V} = \frac{P_s A}{V} = \frac{4.425 \times 10^{10} \times 1000}{200} = 22125 \text{ nF}$$

Objectives: This question is related to Ampere's law

A thin cylindrical conducting shell of radius a, infinite in length along the z axis, carries a current I. Find \vec{H} in all regions.

Hosping one component in the direction

Also Ho is a function of ronly.

Proper Ampere's path are

concentric circles.

The space is divided into two

regions: region & invite the cylinder

regions: a orbide the cylinder

regim 1 - 2a

9 H. I = I enc = 0

: H = 0

region 2 r > a $\oint \overrightarrow{H} \cdot \overrightarrow{dl} = Iene = T$ $H_0 2 \overline{r}r = T = H_0 = \frac{I}{2 \overline{r}r} A/m$